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ABSTRACT
This article presents a model predictive control based

obstacle avoidance algorithm for autonomous ground vehicles
in unstructured environments. The novelty of the algorithm is the
simultaneous optimization of speed and steering without a priori
knowledge about the obstacles. Obstacles are detected using a
planar LIDAR sensor and a multi-phase optimal control problem
is formulated to optimize the speed and steering commands
within the detection range. Acceleration capability of the vehicle
as a function of speed, and stability and handling concerns
such as tire lift-off are taken into account as constraints in the
optimization problem, whereas the cost function is formulated to
navigate the vehicle as quickly as possible with smooth control
commands. Thus, a safe and quick navigation is enabled without
the need for a preloaded map of the environment. Simulation
results show that the proposed algorithm is capable of navigating
the vehicle through obstacle fields that cannot be cleared with
steering control alone.

∗Address all correspondence to this author.

1 INTRODUCTION

Obstacle avoidance is a critical capability for autonomous
ground vehicles (AGVs). It refers to the task of sensing the
vehicle’s surroundings and generating control commands to
navigate the vehicle safely around the obstacles. Typically,
safety is interpreted as collision free, which may be an adequate
interpretation in certain applications such as small ground
robots. However, for the AGVs that are at least the size of
a passenger vehicle, vehicle dynamics related safety concerns
such as excessive sideslip or tire lift-off are also important.
Thus, obstacle avoidance algorithms are needed that can utilize
knowledge of vehicle dynamics to avoid collisions even when the
vehicle is operated at its limits. Creating such algorithms would
not only be beneficial for safe and fast navigation of AGVs,
thereby improving their performance, but they could also be used
as an advanced safety feature in human driven vehicles.

Many obstacle avoidance algorithms have been developed
in the literature that allow for fast, continuous, and smooth
motion of AGVs among unexpected obstacles. The can be
classified into four categories: graph search based methods [1]
[2], virtual potential and navigation function based methods
[3] [4], meta-heuristic based methods [5], and mathematical
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optimization based methods [6] [7]. Among these categories,
mathematical optimization based methods are particularly
attractive, because they offer a rigorous and systematic approach
to take vehicle dynamics and safety constraints into account. The
model predictive control (MPC) approach is a widely adopted
mathematical optimization based approach. Prior research
has demonstrated successful applications of MPC to obstacle
avoidance in AGVs [8], [9], [10], [11], [12], [13]. Some active
safety methods leverage the MPC framework, as well, to ensure,
for example, safe lane keeping or vehicle stability [14], [15],
[16], [17]. The first applications of MPC to obstacle avoidance
in AGVs assumed that the controller has full knowledge about
the environment. They also were not concerned with the
level of fidelity that the model used by the controller needs
to possess for satisfactory performance, where the performance
criteria in some cases also include the dynamical safety of the
vehicle, such as no tire lift-off. Prior work by the authors
developed a nonlinear MPC algorithm with a corresponding
sensor data processing algorithm for obstacle avoidance in
high-speed, large-size autonomous ground vehicles that perceive
the environment only through a planar LIDAR sensor [18], [19].
The algorithm can navigate an AGV in an obstacle field without
collision while ensuring vehicle dynamical safety. However, the
formulation assumes that the vehicle speed is constant, which
can limit the mobiltiy performance and the obstacle fields that
can be cleared with this algorithm.

This paper presents a novel MPC formulation that
simultaneously optimizes both the longitudinal speed and
steering control commands in an AGV that relies only on a planar
LIDAR sensor to detect the obstacles. A typical military truck
is considered as a reprentative high-speed, large-size AGV with
significant vehicle dynamics. No map of the environment is
available to the algorithm, but the target location is assumed to
be known. Given the obstacle boundaries that are detected within
the LIDAR range and the vehicle’s dynamic and mechanical
constraints, the algorithm aims to navigate the vehicle as quickly
as possible towards the target while ensuring safety. Vehicle
dynamics are taken into account through a 3 degrees of freedom
(DoF) vehicle model in the algorithm. Vehicle speed and
acceleration limits are generated based on a powertrain model.
For the particular vehicle of interest, the vehicle dynamical
safety requirement is translated to avoiding single tire lift-off,
because tire lift-off will happen before excessive sideslip. A
constrained optimal control problem (OCP) is formulated and
solved within the MPC framework. Simulations with a 14 DoF
vehicle model as the plant are given to highlight the benefits of
the new framework compared to prior work.

The rest of the paper is organized as follows. Section 2 gives
an overview of the nonlinear MPC-based obstacle avoidance
algorithm. Section 3 presents the OCP formulation in the MPC
in detail and outlines the solution strategy. Section 4 presents
and discusses the simulation results. Conclusions are drawn in

Section 5.

2 OVERVIEW OF THE MPC-BASED OBSTACLE
AVOIDANCE FRAMEWORK

Fig. 1 shows the schematic of the nonlinear MPC algorithm with
the AGV in closed loop. This section gives an overview of this
framework and explains its basic flow at a high level.

The problem of interest to be solved with the MPC
framework can be summarized as follows. Consider an AGV
in an unstructured environment as illustrated in Fig. 2. Here the
term ”unstructred environment” means that there are no lanes to
follow and no traffic rules to obey. The mission of the AGV is
to move from its initial position to a given goal position safely
and as quickly as possible. Between the two positions there
exist obstacles, whose location, size, and shape are not known a
priori. Obstacle information is obtained through a planar LIDAR
sensor, which is mounted in front of the vehicle and returns the
distance to the closest obstacle boundary in each radial direction
at an angular resolution of ε . Fig. 2 illustrates a case with three
obstacles. The vehicle is assumed to travel on a planar surface;
hence, a 2D representation as shown in Fig. 2b suffices for the
purposes of this work.

The task of the MPC algorithm is to use the LIDAR
data to nagivate the vehicle through the obstacle field safely
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and quickly. Two safety constraints are considered; namely,
avoiding the obstacles, and ensuring the vehicle’s dynamical
safety. The first safety constraint is fulfilled by constraining
the position of the AGV inside the safe region established from
the LIDAR data. The data from LIDAR is first processed by
simplifying the obstacle shape and adding safety margins. As
shown by the example safe region in Fig. 2b, which is the shaded
area, it is typically not possible to define the safe area using
a single differentiable function. This is problematic, because
the OCP solver requires all functions to be twice continuously
differentiable. To address this challenge, the safe region is
partitioned into several sub-regions and a multi-phase OCP
formulation is used. The procedures of partitioning and the usage
of sub-regions are described in detail in [19]. Only the basic
ideas are summarized here for brevity.

Assuming the edges of the obstacles are straight, the safe
region can be partitioned in a way such that each sub-region can
be specified by a set of linear inequalities. Many partitioning
options exist and Fig. 3 illustrates one way of partitioning the
safe region shown in Fig. 2b. In this approach, the safe area
is divided into sectors and triangles, where sectors are called
openings and they are free from obstacles, whereas triangles are
regions terminated by obstacle boundaries. To avoid obstacles
and move towards the target, the first sub-region to transverse
is the sub-region in front of the vehicle (OB4), and the last
sub-region to transverse is one of the openings. Note, however,
that because of the limited turning radius of the vehicle, not
all openings are necessarily feasible. For example, in Fig. 3,
there are two feasible openings, OP2 and OP3, whereas OP1 and
OP4 are infeasible opening, because the vehicle cannot steer into
these sub-regions without moving outside the safe region. Thus,
there are two possible sub-region sequences the vehicle can move
through: OB4→OP2 and OB4→OP3. Based on the location of
the goal position, one or both of the sub-region sequences need
to be evaluated. Thus, at each step of the MPC, a multi-phase
OCP is formulated for each of the sequences to be evaluated.
The OCP is multi-phase because the optimal trajectory typically
needs to traverse multiple sub-regions and hence the position
constraints are different for each sub-region. Fig. 4 shows the
optimal trajectory for the sequence OB4→ OP3 as an example.
The optimal trajectory for the sequence OB4→ OP2 is obtained
similarly. These two optimal trajectories are then compared and
the control commands corresponding to the better one is executed
by the AGV.

The second safety constraint is ensuring dynamical safety,
which is defined as avoiding single tire lift-off. The details of
this constraint are discussed in Section 3.

3 OPTIMAL CONTROL PROBLEM FORMULATION

This section presents the main contribution of this paper; namely,
the multi-phase OCP formulation that needs to be solved at each

step of the MPC to simultaneously optimize the longitudinal
speed and steering angle.

The formulation in general form is given by

minimize
ξ ,ζ ,T 1,...,T N

J = T
[
ξ
(N) (T N) ,ζ (N) (T N) ,T N

]
+

N

∑
i=1


T i∫

T i−1

I
[
ξ
(i) (t) ,ζ (i) (t)

]
dt

 (1)

subject to
∀i=1,...,N

ξ̇
(i)
(t) = V

[
ξ
(i)(t),ζ (i)(t)

]
(2)

ξ
(i) (T i−1)= ξ

(i−1) (T i−1) , ξ
(0) (T 0)= ξ0 (3)

R(i)
[
x(i)(t),y(i)(t)

]
≤ 0 (4)

S
[
ξ̇
(i)
(t),ξ (i)(t)

]
≤ 0 (5)

δ f ,min ≤ δ
(i)
f (t)≤ δ f ,max (6)

ς f ,min ≤ ς
(i)
f (t)≤ ς f ,max (7)

Umin ≤U (i)(t)≤Umax (8)

ax,min

[
U (i)(t)

]
≤ a(i)x (t)≤ ax,max

[
U (i)(t)

]
(9)

Jx,min ≤ J(i)x (t)≤ Jx,max (10)
U (Tp)≤Uthreshold (11)√

[x(Tp)− x(0)]2 +[y(Tp)− y(0)]2 ≤ RLIDAR

(12)

t ∈
[
T i−1,T i] ,T i−1 < T i

T 0 = 0,T N = Tp,Tp,min < Tp ≤ Tp,max
(13)

By minimizing the cost function specified in Eq. (1), subject
to constraints defined in Eq. (2) - Eq. (13) for all phases,
the optimal state trajectories ξ

(i)(t), t ∈ [T i−1,T i], the optimal
control trajectories ζ

(i)(t), t ∈ [T i−1,T i], and the times T i−1, T i,
i = 1, . . . ,N for transitioning from one sub-region to the next are
obtained, where N is the total number of phases; i.e., the number
of sub-regions in a given sequence. The following sub-sections
define the variables and explain the problem formulation in
detail. The constraints are discussed first, and the cost function
formulation is explained next.

3.1 Eq. (2): Vehicle model
A 3 DoF vehicle model is used in the MPC to predict the
dynamics of the AGV. As shown in [19], this model is sufficient
for the purposes of MPC when the longitudinal load transfer
and tire nonlinearities are taken into account. The state-space
equation for the 3 DoF nonlinear vehicle model can be written as

ξ̇ = A (ξ )+Bζ (14)
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with

A (ξ ) =



U cosψ− (V +L f r)sinψ

U sinψ +(V +L f r)cosψ

r
ax

(Fy, f +Fy,r)/M−Ur
(Fy, f L f −Fy,rLr)/Izz

0
0


BT =

[
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

]
where the state vector is ξ T = [ x y ψ U V r δ f ax ] and the
control vector is ζ T = [ ς f Jx ]. As shown in Fig. 5, (x,y) is the
vehicle’s front center position in global coordinates; ψ is yaw
angle; U , and V are longitudinal and lateral speeds in vehicle

fixed coordinate, respectively; r is yaw rate; δ f is steering angle;
ax is longitudinal acceleration; ζ f is steering rate; and Jx is
longitudinal jerk. As for the vehicle parameters, M is vehicle
mass; Izz is moment of inertia; and L f and Lr are distances
between the vehicle’s center of gravity location and the front axle
and rear axle, respectively. Fy, f and Fy,r are tire lateral forces
generated at the front axle and the rear axle, respectively. They
are predicted using the the pure-slip Pacejka Magic Formula tire
model [20], and are functions of corresponding tire vertical loads
and slip angles as shown in Fig. 6.

In the tire model, tire vertical loads are required as inputs.
The vertical loads acting on the four wheels are given by the
following equations [21]

Fz, f l =
1
2

(
Fz, f 0−∆Fz,x

)
−∆Fz,y f (15)

Fz, f r =
1
2

(
Fz, f 0−∆Fz,x

)
+∆Fz,y f (16)

Fz,rl =
1
2 (Fz,r0 +∆Fz,x)−∆Fz,yr (17)

Fz,rr =
1
2 (Fz,r0 +∆Fz,x)+∆Fz,yr (18)

where Fz, f 0 =
MLrg
L f +Lr

is the static front axle load; Fz,r0 =
ML f g
L f +Lr

is
the static rear axle load; ∆Fz,x is the longitudinal load transfer;
∆Fz,y f is the front axle lateral load transfer; and ∆Fz,yr is the rear
axle lateral load transfer.

These load transfers are approximated by the following
relationships

∆Fz,x ≈ Kz,x
(
U̇−V r

)
(19)

∆Fz,y f ≈ Kz,y f
(
V̇ +Ur

)
(20)

∆Fz,yr ≈ Kz,yr
(
V̇ +Ur

)
(21)

where Kz,x is defined as the longitudinal load transfer coefficient;
and Kz,y f and Kz,yr are defined as the front and rear lateral

Lf Lr

U Vαf

αrδf

r
Fyf Fyr

x

y

FIGURE 5. Schematic of the 3 DoF vehicle model.
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load transfer coefficients, respectively. These coefficients are
obtained from several sets of simulations with a 14 DoF vehicle
model [22] that includes suspension dynamics [22], nonlinear
tire dynamics [20], powertrain dynamics [23] [24], and brake
dynamics [25]. The details of the complete model is omitted
here for brevity, but can be found in the referred papers.

Fig. 7 and Fig. 8 show the simulation results for the
longitudinal and lateral load transfers with the 14 DoF model
and the straight line fittings whose slopes represent the constant
load transfer coefficients.

To obtain the longitudinal load transfer coefficient, two sets
of simulations are conducted. In the first set of simulations,
the throttle command is maintained constant at different levels
with zero braking command and zero steering angle. The results
are used to study the longitudinal load transfer during vehicle
acceleration. In the second set of simulations, the braking
command is maintained constant at different levels with zero
throttle command and zero steering angle. The results can then
be used to study the longitudinal load transfer during vehicle
deceleration. The black dashed line in Fig. 7 is a line that passes
through the origin with a slope estimated from these two sets of
data. The deviation from this line to the upper left side is caused
by aerodynamic drag.

The data for estimating the lateral load transfer coefficients
is generated by following the maneuver specified by Fig. 9a and
Fig. 9b. The vehicle steers with a sinusoidal angle. In the
meantime, the speed is changing at a slower frequency. Fig. 8
shows the simulation data points and the fitted lines. Simulations
with other maneuvers confirm the results.

Even through the results from the simulations are not
perfectly affine, the approximations in Eq. (19)-(21) are
sufficient for the purposes of this work as the approximation error
introduced by these estimated coefficients is on the order of 5%
as the comparative simulation results in Fig. 9 illustrate.

3.2 Eq. (3): Initialization
The initial states of each phase are set the same as the final states
of the previous phase. For the first phase, the initial values of the
states x,y,ψ,V , and r are from the measurements. To maintain
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FIGURE 7. Longitudinal load transfer as a function of longitudinal
acceleration.

a smooth reference speed and a smooth steering sequence, the
initial values of U,ax, and δ f are the values from the end of the
execution horizon of the previous step.

3.3 Eq. (4): Position constraints
Vehicle obstacle avoidance is enforced through position
constraints; the vehicle trajectory must stay within the safe
region that is obtained after the LIDAR data is processed. For
each of the phase in the OCP, a set of position constraints
compacted in the following form is applied

A(i)
L×1x(i)(t)+B(i)

L×1y(i)(t)≤C(i)
L×1, t ∈ [T i−1,T i] (22)

where A(i)
L×1, B(i)

L×1, and C(i)
L×1 are vectors of length L, which is

the total number of lines bounding the sub-region in phase i. The
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FIGURE 8. Front and rear lateral load transfers as a function of lateral
acceleration, respectively.
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FIGURE 9. A sample simulation used to validate the accuracy of
vertical load prediction. The vehicle performs the maneuver specified
by subplots (a) and (b). The blue solid line in subplot (c) is the vertical
load of rear left tire from the 14 DoF vehicle model. The red dashed
line is the prediction using Eq. (17) with state values from the 14 DoF
vehicle model simulation.

UNCLASSIFIED: Distribution Statement A. Approved for public release. #26495



6

entries of these vectors are the outputs of LIDAR data processor.

3.4 Eq. (5): Dynamical safety constraints
In this study, ensuring the vehicle’s dynamical safety is translated
to avoiding single tire lift-off. This is a conservative criterion
used to prevent rollover [26]. Prior work enforced this constraint
through steering angle bounds [7], or lateral acceleration bounds
[27]. However, these approaches ignore the effect of longitudinal
acceleration, which is an important factor to consider in the
variable speed case. Hence, in this work, the no tire lift-off
requirement is taken into account directly by enforcing a positive
vertical load on all four tires at all times. Because Fz, f 0 > Fz,r0
and Kz,yr > Kz,y f , vertical loads of the two tires on the back are
constrained to be greater than a positive threshold value. In
Fig. 10, the range of vehicle accelerations for limiting rear tire
vertical loads is smaller than the range for limiting front tire
vertical loads. Thus, it is sufficient to include only the vertical
load limits of the two rear tires.
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FIGURE 10. When the vehicle accelerations are within the entire
colored region, the vertical loads of the two front tires will be greater
than Fz,threshold = 1000 N. However, to make sure that the vertical
loads of the two rear tires are greater than this threshold, the vehicle
accelerations need to stay within the blue region.

This constraint can be expressed using the following
inequalities, which are obtained by substituting Eq. (19), and
Eq. (21) into Eq. (17), and Eq. (18):

1
2

[
Fz,r0 +Kz,x

(
U̇ (i)(t)−V (i)(t)r(i)(t)

)]
±

Kz,yr

(
V̇ (i)(t)+U (i)(t)r(i)(t)

)
≥ Fz,threshold

(23)

Another important vehicle dynamics related safety concern
is excessive sideslip, which is considered as a handling
instability. To prevent it, methods such as using a yaw-sideslip
state envelope [17] could be employed. However, the vehicle
platform of interest in this work has a relatively higher center of
gravity and thus tire lift-off occurs before excessive sideslip.
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FIGURE 11. Vehicle longitudinal speed and acceleration profiles for
a full throttle - full brake cycle.

3.5 Eq. (6) - Eq. (10): State and Control Bounds

Constant bounds are imposed on the steering angle and steering
rate in Eq. (6), and Eq. (7), respectively. These bounds reflect
the vehicle mechanical limits and steering actuator performance
limits.

The vehicle speed, acceleration, jerk bounds in Eq. (8),
Eq. (9), and Eq. (10) are associated with the powertrain and brake
dynamics. Powertrain dynamics are modeled according to [23]
[24]. The model includes the flywheel, engine, torque converter,
transmission, and differential. The dynamics of the hydraulically
actuated brake is modeled using the single state model in [25]
that produces a good representation of the dynamics from the
master cylinder to vehicle deceleration. Fig. 11a and Fig. 11b are
longitudinal speed and acceleration profiles, respectively, when
a full throttle command is applied followed by a full braking
command. As a result of this simulation, the maximum speed
is set as 30 m/s in the OCP formulation. Furthermore, as shown
in Fig. 12, acceleration capability depends on the instantaneous
speed. The upper bound and lower bound are approximated
using fourth order polynomials as follows:

ax,max (U) = c1U3 + c2U2 + c3U + c4 (24)

ax,min (U) = c5U3 + c6U2 + c7U + c8 (25)

where, c1, · · · ,c8 are parameters obtained from polynomial
fitting to the simulation data.
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3.6 Eq. (11) - Eq. (13): Terminal constraints
The first terminal constraint, Eq. (11), limits the vehicle speed
at the end of the prediction horizon. This limit is introduced
to prepare for potential obstacles in the future. Specifically, the
vehicle is allowed to accelerate at the beginning of the prediction
horizon, but then is required to decelerate to a threshold speed at
the end of the prediction horizon, since no obstacle information
such as location, shape, and size are known a priori. The second
terminal constraint, Eq. (12), constrains the vehicle trajectory
to be within the LIDAR detection range. The third terminal
constraint, Eq. (13), specifies the limits on the prediction horizon.

3.7 Eq. (1): Cost function
The cost function defines in what sense a trajectory is considered
to be optimal. In this work, the cost function formulation
includes six terms that are linearly combined using relative
weights as follows:

J =
sT

s0
+wψ ψ

2
diff +wtTp +wI1 I1 +wI2 I2 +wI3 I3 (26)

where s0 is the distance between the prediction initial position
[x(0),y(0)] and the goal position [xg,yg], whereas sT is the
distance between the prediction final position [x(Tp),y(Tp)] and
[xg,yg]. Visual representations of these variables are shown in
Fig. 2b. ψdiff is the difference between the final heading angle
ψ(Tp) and the angle of the [xg,yg] relative to [x(Tp),y(Tp)], which
is calculated as

ψdiff = atan2
[
sin(ψ(Tp)−ψfrg),cos(ψ(Tp)−ψfrg)

]
(27)

ψfrg = atan2 [yg− y(Tp),xg− x(Tp)] (28)

Tp is the prediction horizon. If proper weighting factors are
selected, the first three terms will result in a trajectory in which
the end point of the predicted trajectory is close to the target, the
final heading angle is pointing to the target, and the time used to
cover the prediction distance is small.

Furthermore, three integral terms are included in the cost
function. The first term, I1, penalizes the cost when the tire
vertical load is close to the specified threshold, which is used
to prevent vehicle from operating at the limit unnecessarily.
The second term, I2, is used to minimize the integral over the

prediction horizon of the distance to the line that is passing
through the goal [xg,yg] along a desired direction φg. This term is
used to have the vehicle pass through the target from the desired
direction. The third term, I3, is a regularization term minimizing
the control effort that is defined as the integral of the weighted
sum of δ 2

f , ς2
f , and J2

x .

I1 =
∫ Tp

0

{
2+ tanh

[
−(Fz,rl−a)/b

]
+ tanh [−(Fz,rr−a)/b]

}
dt

(29)

I2 =
∫ Tp

0

{
sin(φg) [x(t)− xg]− cos(φg) [y(t)− yg]

}2 dt (30)

I3 =
∫ Tp

0

[
ς

2
f (t)+wδ δ

2
f (t)+wJJ2

x(t)
]

dt (31)

This completes the description of the formulation.

3.8 Solving the OCP
The resulting OCP problem is solved using a pseudo-spectral
method to transform the continuous-time optimization problem
into a nonlinear programming problem [28], which is then solved
using the interior point method [29].

4 SIMULATION RESULTS AND DISCUSSION
In this section, numerical simulations of the developed nonlinear
MPC obstacle avoidance algorithm with the 14 DoF vehicle
model mentioned in Section 3.1 as the AGV shown in Fig. 1 are
presented.

Two scenarios are considered with two different obstacle
fields, and each scenario is simulated with both the formulation
presented in this paper and the constant speed formulation of [19]
for comparison. All simulations are run with a vehicle initial
speed of 20 m/s. The LIDAR detection range is RLIDAR = 100
m. The goal is to pass through the specified target from the
90 degrees direction in the global coordinate. At each step of
the MPC, the optimization generates a trajectory within the 100
m LIDAR detection range. Only the first 0.5 second of the
planned control command is executed by the vehicle. A new
trajectory is planned every 0.5 second using the updated vehicle
state information and obstacle information from the sensors.

The results of the first scenario are shown in Fig. 13. In
this case, both the constant speed algorithm and variable speed
algorithm navigate the vehicle through the obstacle field safely;
i.e., collision-free as shown in Fig. 13a and without tire lift-off
as shown in Fig. 13d and Fig. 13e. In the constant speed case,
because the speed controller used does not take the steering input
into account, the speed has a maximum deviation of 0.3 m/s from
the desired value of 20 m/s. In the variable speed case, the speed
of the vehicle gradually increases from 20 m/s up to 22 m/s and
decreases back towards 20 m/s within the final 3.5 seconds as
desired. In this case, the vehicle arrives the target 1.7 seconds
earlier out of the 25 seconds trajectory; i.e., about 7% faster.

UNCLASSIFIED: Distribution Statement A. Approved for public release. #26495



8

350 400 450
100

200

300

400

500

600

700

x [m]

y 
[m

]

Start

Target

Constant U

Variable U

(a) Trajectory.

0 10 20

20

21

22

t [s]
U

x [m
/s

]

Constant U

Variable U

(b) Longitudinal speed.

0 10 20
−4

−2

0

2

t [s]

δ f [°
]

Constant U

Variable U

(c) Steering angle.

0 10 20
0

5

10

t [s]

F z [k
N

]

(d) Vertical load for the constant
speed case.

0 10 20
0

5

10

t [s]

F z [k
N

]

(e) Vertical load for the variable
speed case.

FIGURE 13. Results of simulation set 1. Both constant speed and
variable speed navigations are successful. In the variable speed case,
the vehicle arrives the target earlier. In the subplots (d) and (e), the
black dashed lines indicate the minimum allowable vertical tire force.

A more important benefit of the new formulation is
demonstrated with the second scenario as shown in Fig. 14.
With the constant speed algorithm, the vehicle collides with the
obstacle after 11.5 seconds. However, with the variable speed
algorithm, the vehicle is safely navigated through the obstacle
field by decelerating to a speed around 10 m/s. The vehicle starts
accelerating again after the obstacle is cleared. As shown in
Fig. 14a and Fig. 14d, the trajectory is collision free. Fig. 14f
shows that the tire vertical loads are all above the specified
threshold; hence, dynamical safety of the vehicle is ensured, as
well.

5 SUMMARY AND CONCLUSIONS

This paper considers AGVs in unstructured environments
without a priori information about the obstacles and presents
an MPC-based obstacle avoidance algorithm that optimizes the
longitudinal speed and steering angle simultaneously to navigate
the AGV safely and as quickly as possible to the target location.
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FIGURE 14. Results of simulation set 2. The constant speed
navigation fails while the variable speed navigation is successful.

A multi-stage OCP formulation is used to incorporate the
obstacle data obtained from the on-board LIDAR sensor. The
formulation of the OCP to be solved at each step of the MPC is
discussed in detail. The powertrain and brake dynamics are taken
into consideration through the bounds on vehicle longitudinal
speed, acceleration and jerk. The dynamical safety requirement
is also accounted for by enforcing a positive vertical load on all
four tires. Two sets of numerical simulations are conducted to
demonstrate the effectiveness of the algorithm. The conclusion
is that the developed variable speed algorithm not only improves
the performance of the vehicle by allowing it to operate closer
to its dynamical limits, but also enables the safe clearance of
obstacle fields that may not be cleared with steering control
alone.
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Future research directions include investigation of
alternative cost function formulations and systematic ways
of selecting the weighting factors. Incorporation of uncertainties
in the model and sensor measurements is another direction.
Although the prediction-correction characteristic allows the
algorithm to tolerate some errors and uncertainties, incorporating
them explicitly would further increase the robustness of the
algorithm. Finally, extension of the formulation to moving
obstacles is also an important direction for future research.
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